Wednesday, 19 November 2014

National Diabetes Awareness Month: Know the Facts

As one of the most prevalent diseases in the United States, diabetes impacts nearly 9.3 percent of the entire population. That translates to around 29.1 million Americans who have diabetes -- with 8.1 million of them undiagnosed -- according to the American Diabetes Association.

There are two common types of diabetes, Type 1 and Type 2. To understand the differences between these types and what it means for the people who have it, it’s important to first understand a few key terms they share: insulin and glucose.

What is Insulin?

Insulin is a hormone produced by the pancreas. Insulin allows your body to use the carbohydrates (sugar) it gets from food sources. It acts as a “regulator” for carbohydrates in your body and prevents your blood sugar levels from becoming too high or too low.

When you eat carbohydrates (sugars), your body either breaks them down for energy, or stores them for future energy needs.

Insulin also helps your body store the sugars and allows the body to release the sugars into your blood stream when your body needs the energy.

What is Glucose?

Glucose, a simple sugar, is an important energy source needed by all cells and organs of our bodies. Glucose comes from various foods we eat, such as fruit, bread, pasta and cereals. Within our stomachs, foods are broken down and then absorbed into the bloodstream.

Type 1 Diabetes

People with type 1 diabetes are not able to make insulin. Without this important hormone to regulate blood sugar levels, they develop high blood sugar called hyperglycemia.

If left untreated, hyperglycemia can cause long-term complications such as:
  • Nerve damage
  • Kidney failure
  • Cardiovascular disease
  • Vision problems
  • Neuropathy, or nerve damage
  • Infections and non-healing wounds
  • Foot complications
There is no current cure for Type 1 diabetes, which is usually diagnosed in children. The Juvenile Diabetes Research Foundation and the Children’s Hospital of Philadelphia are two of the leading global organizations focused on curing Type 1 diabetes, or T1D as it’s also known.

People with type 1diabetes need to take medications (insulin) in order to help their body process carbohydrates.

Type 2 Diabetes

People with type 2 diabetes have insulin in their bodies, but are unable to use insulin effectively. Over time, they become more and more insulin resistant, and their pancreas produces less and less insulin.

Like type 1 diabetes, if left untreated, people with diabetes can experience serious complications such as:
  • Nerve damage
  • Kidney failure
  • Cardiovascular disease
  • Vision problems
  • Neuropathy, or nerve damage
  • Infections and non-healing wounds
  • Foot complications
Type 2 diabetes can be prevented or delayed by maintaining a healthy weight, staying active and eating a healthy diet. Type 2 diabetes is usually diagnosed in adults; however, more children are being diagnosed with type 2 diabetes.

People with type 2 diabetes may need a combination of medications to get their blood sugar levels stable. Depending on the severity of their blood sugar levels, people with type 2 diabetes may also be able to manage their disease with diet and exercise.

Diabetes treatment at Penn

Endocrinologists at the Penn Rodebaugh Diabetes Center specialize in the diagnosis and treatment of type 1 diabetes, type 2 diabetes, pre-diabetes, gestational diabetes (diabetes during pregnancy) and other related conditions.

They work closely with patients’ primary care providers to treat and manage diabetes and related conditions.

Tuesday, 11 November 2014

The circulatory system - blood vessels

The mammalian circulatory system is a closed double circulation, consisting of a heartblood vessels and blood.

The heart produces high pressure --> blood moves through the vessels by mass flow.









The mammalian circulatory system is
  closed: blood travels inside vessels
  double circulatory     
                                 pulmonary system:  heart -->       lungs                       --> heart
                                 systemic system     : heart --> around the rest of body --> heart


Blood vessels

Arteries

  • Carry blood away from the heart.
  • Blood that flows through arteries is pulsing and at a high pressure
  • Have thick, elastic walls which can expand and recoil as the blood pulses through.
  • The artery wall contains variable amounts of smooth muscle. This muscle does not help to push the blood through them.
Arterioles 
  • Arteries branch into smaller vessels called arterioles. 
  • They contain smooth muscle in their walls, which can contract and make the lumen (space inside) smaller. 
  • Helps to control the flow of blood to different parts of the body. 




Capillaries 
  • Tiny vessels with just enough space for red blood cells to squeeze through.
  • Their walls are only 1 cell thick, and there are often gaps in the walls through which plasma (the liquid component of blood) can leak out. 
  • Deliver nutrients, hormones and other requirements to body cells, and take away their waste products. 
  • Small size and thin walls minimise diffusion distance, enabling exchange to take place rapidly between the blood and the body cells.
Venules 

  • Small blood vessels that connect the capillary beds to the veins.

Veins 

  • Carry low-pressure blood back to the heart. 
  • Their walls do not need to be as tough or as elastic as those of arteries as the blood is not at high pressure and is not pulsing. 
  • The lumen is larger than in arteries, reducing friction which would otherwise slow down blood movement. 
  • Contain valves, to ensure that the blood does not flow back the wrong way. 
  • Blood is kept moving through many veins, for example those in the legs, by the squeezing effect produced by contraction of the body muscles close to them, which are used when walking.



Pressure changes in the circulatory system

The pressure of the blood changes as it moves through the circulatory system.

• In the arteries, blood is at high pressure because it has just been pumped out of the heart. The pressure oscillates (goes up and down) in time with the heart beat. The stretching and recoil of the artery walls helps to smooth the oscillations, so the pressure becomes gradually steadier the further the blood moves along the arteries. The mean pressure also gradually decreases.

• The total cross-sectional area of the capillaries is greater than that of the arteries that supply them, so blood pressure is less inside the capillaries than inside arteries.

• In the veins, blood is at a very low pressure, as it is now a long way from thepumping effect of the heart.

 
 Syllabus 2015


(v) describe the mammalian circulatory system as a closed double circulation;

(m) [PA] describe the structures of arteries, veins and capillaries and be able to recognise these vessels using the light microscope;

(n) explain the relationship between the structure and function of arteries, veins and capillaries;


Syllabus 2016 

As animals  become larger, more  complex and more  active,  transport systems become essential to supply nutrients to, and remove waste from, individual cells. Mammals are far more  active than plants  and require  much  greater supplies of oxygen.  This is transported by haemoglobin inside red blood cells. 

Learning outcomes

Candidates should  be able to:

8.1    The circulatory system

The mammalian circulatory system consists of a pump, many  blood vessels and blood, which is a suspension of red blood cells and white  blood cells in plasma.

a)   state that  the mammalian circulatory system is a closed double circulation consisting of a heart,  blood vessels and blood

b)   observe and make  plan diagrams of the structure of arteries, veins and capillaries using prepared slides  and be able to recognise these vessels using the light microscope

c)   explain the relationship between the structure and function  of arteries, veins and capillaries

Sunday, 9 November 2014

Transport in mammals

8.1    The circulatory system
8.2    The heart


As animals  become larger, more  complex and more  active,  transport systems become essential to supply nutrients to, and remove waste from, individual cells. Mammals are far more  active than  plants  and require  much  greater supplies of oxygen.  This is transported by haemoglobin inside red blood cells. Candidates will be expected to use  the knowledge gained  in this section to solve problems in familiar and unfamiliar contexts.

Learning outcomes

Candidates should  be able to:

8.1    The circulatory system

The mammalian circulatory system consists of a pump, many  blood vessels and blood, which is a suspension of red blood cells and white  blood cells in plasma.

a)   state that  the mammalian circulatory system is a closed double circulation consisting of a heart,  blood vessels and blood

b)   observe and make  plan diagrams of the structure of arteries, veins and capillaries using prepared slides  and be able to recognise these vessels using the light microscope

c)   explain the relationship between the structure and function  of arteries, veins and capillaries

d)   observe and draw the structure of red blood cells, monocytes, neutrophils and lymphocytes using prepared slides  and photomicrographs

e)   state and explain the differences between blood, tissue fluid and lymph

f) describe the role of haemoglobin in carrying oxygen  and carbon dioxide with reference to the role of carbonic  anhydrase, the formation of haemoglobinic acid and carbaminohaemoglobin (details of the chloride shift are not required)

g)   describe and explain the significance of the oxygen dissociation curves of adult oxyhaemoglobin at different carbon dioxide concentrations (the Bohr effect)

h)   describe and explain the significance of the increase in the red blood cell count  of humans at high altitude

8.2    The heart

The mammalian heart  is a double  pump:  the right side pumps blood at low pressure to the lungs and the left side pumps blood at high pressure to the rest  of the body.

a)   describe the external and internal structure of the mammalian heart

b)   explain the differences in the thickness of the walls of the different chambers in terms of their functions with reference to resistance to flow

c)   describe the cardiac cycle (including blood pressure changes during systole and diastole)

d)   explain how heart  action is initiated  and controlled (reference should  be made to the sinoatrial  node, the atrioventricular node  and the Purkyne  tissue, but not to nervous and hormonal control)


Transport in mammals

• The need for, and functioning of, a transport system in mammals
• Structure and functioning of the mammalian heart


Learning Outcomes

Candidates should be able to:

(m) [PA] describe the structures of arteries, veins and capillaries and be able to recognise these vessels using the light microscope;

(n) explain the relationship between the structure and function of arteries, veins and capillaries;

(o) [PA] describe the structure of red blood cells, phagocytes (macrophages and neutrophils) and
lymphocytes;

(p) state and explain the differences between blood, tissue fluid and lymph;

(q) describe the role of haemoglobin in carrying oxygen and carbon dioxide (including the role of carbonic anhydrase, the formation of haemoglobinic acid and carbaminohaemoglobin);

(r) describe and explain the significance of the oxygen dissociation curves of adult oxyhaemoglobin at different carbon dioxide concentrations (the Bohr effect);

(s) describe and explain the significance of the increase in the red blood cell count of humans at high
altitude;

(t) describe the external and internal structure of the mammalian heart;

(u) explain the differences in the thickness of the walls of the different chambers in terms of their functions;

(v) describe the mammalian circulatory system as a closed double circulation;

(w) describe the cardiac cycle (including blood pressure changes during systole and diastole);

(x) explain how heart action is initiated and controlled (reference should be made to the sinoatrial node, the atrioventricular node and the Purkyne tissue);

(y) use the knowledge gained in this section in new situations or to solve related problems.



Summary of Transport in multicellular plants

1. Multicellular organisms with small surface area to volume ratios need transport systems.

2. Water and mineral salts are transported through a plant in xylem vessels. Movement of water is a  passive process in which the water moves down a water potential gradient from soil to air.









 3. The energy for this process comes from the Sun, which causes evaporation of water from the wet walls of mesophyll cells in leaves. Water vapour in the air spaces of the leaf diff uses out of the leaf through stomata, in a process called transpiration. This loss of water sets up a water potential gradient throughout the plant.

 4. Transpiration is an inevitable consequence of gaseous exchange in plants. Plants need stomata so that carbon dioxide and oxygen can be exchanged with the environment.

 5. The rate of transpiration is affected by several environmental factors, particularly temperature, light intensity, wind speed and humidity. It is difficult to measure rate of transpiration directly, but water uptake can be measured using a potometer.

 6. Plants that are adapted to live in places where the environmental conditions are likely to cause high rates of transpiration, and where soil water is in short supply, are called xerophytes. They have often evolved adaptations that help to reduce the rate of loss of water vapour from their leaves.

7. Water enters the plant through root hairs by osmosis. Water crosses the root either through the cytoplasm of cells (the symplast pathway) or via their cell walls (the apoplast pathway), and enters the dead, empty xylem vessels. It also moves across the leaf by symplast and apoplast pathways.

8. Water moves up xylem vessels by mass flow, as a result of pressure diff erences caused by loss of water from leaves by transpiration. Root pressure can also contribute to this pressure diff erence.

9. Mineral salts are essential nutrients. Examples are nitrate, which is needed for the synthesis of a wide variety of organic compounds, and magnesium, which is a constituent of chlorophyll.

10. Translocation of organic solutes such as sucrose occurs through living phloem sieve tubes. The 
phloem sap moves by mass flow from a region known as the source to a region known as the sink. Sucrose is produced at the source (e.g. photosynthesising leaves) and used at the sink (e.g. a flower or a storage organ).

 11. Mass flow occurs as a result of pressure differences between the source and the sink. Active loading of sucrose into the sieve tubes at the source results in the entry of water by osmosis, thus creating a high hydrostatic pressure in the sieve tubes.

 12. Both xylem vessels and phloem sieve tubes show unique structural features which are adaptations to their roles in transport.

1. Multiple-choice test

1. Which feature is seen in both sieve tube elements and xylem vessel elements?

A   elongated cells arranged end to end
B   end walls perforated by large pores
C   lignified walls with pits
D   thin lining layer of cytoplasm

2. Part of the stem of a plant is heated to kill living vascular tissues.

How will this treatment affect transport through phloem and xylem?


3. Which description is correct?

A   Companion cells have no nuclei and are not metabolically active.
B   Pits are part of the cellulose cell wall of a xylem vessel element where no lignin has been deposited.
C   Sieve tube elements are dead and have no cytoplasm or organelles.
D   The lignified wall of a xylem vessel element is an adaptation to the high pressure inside the element.

4  What is responsible for the upward movement of water in xylem vessels in plants?

A  active loading of water against the water potential gradient in roots and osmosis in the xylem vessels
B  increasing water potential at the top of the xylem vessels and osmosis in the roots
C decreasing water potential at the top of the xylem vessels and cohesion of water in the vessels
D translocation in the leaves and capillarity in the xylem vessels

5. The movement of water in the apoplast pathway takes place outside living cells, whereas the symplast pathway involves living cells.

What occurs in the apoplast and symplast pathways?

6. What may magnesium ions and nitrate ions be used to make in a plant?



7. Which of the following are adaptations shown by xerophytes?

1  leaves covered by hairs
2  leaves covered in a layer of wax
3  leaves reduced to spines
4  stems that store water
5  stomata sunken into pits

A   1, 2, 3, 4 and 5
B   1, 2 and 3 only
C   2, 3 and 4 only
D   1, 4 and 5 only

8 Translocation moves sucrose from sources to sinks.
Which row shows a source and a sink?










9 Which description of translocation is not correct?



A   Loading sucrose into a sieve tube element increases the water potential of the sap inside it.

B   Sucrose is actively loaded into a sieve tube element at a source through a companion cell.

C   Sucrose is removed from a sieve tube element at a sink and converted into other sugars.

D   When sucrose is loaded into a sieve tube element water follows, moving down a water potential gradient by osmosis.


10. The rate of transpiration from a plant was measured in different 
conditions. One of three environmental factors was varied at a time. 
The results are shown in the graph.




Answers to Multiple choice test
1. A
2. B
3. B
4. C
5. B
6. A
7. A
8. B
9. A
10. C

2. End-of-chapter questions

1 If sucrose is actively loaded into a sieve tube, which combination of changes take place in the sieve tube?


2  Which  of the following rows correctly describes the hydrostatic  pressure of the two types of elements?



3. The diagram shows the effect  of light  intensity on the  rate  of transpiration     from the upper and lower epidermis of a leaf. Other environmental factors were kept constant. What could explain the differences in transpiration rates from the two surfaces?

 A   Higherlight intensities   are associated   with   higher   temperatures.
 B   Thepalisade mesophyll   cells have  fewer  air  spaces  than   the  spongy   mesophyll    cells.
 C   Theupper epidermis  has  fewer  stomata.
 D   Theupper epidermis  is more  exposed  to  light.


4. Explain how water  moves  from:
a   the soil into a root  hair  cell.
b   one root cortex  cell to  another.
c   a xylem vessel into  a leaf  mesophyll  cell.


5. Name three cell types found   in:
i    xylem
ii     phloem.
b   State the functions of the cell types you have  named.

6  a  The effect of increasing size on surface  area:  volume  ratio can be shown  most  easily using  a cube. Copy and complete the  following table for cubes with  the dimensions  indicated (units are not needed):



b. Explain the  relevance   of these  dimensions and ratios to transport in large multicellular organisms.


7. Arrange the following in order of water potential.  Use the symbol > to mean  'greater than'. 
dry atmospheric air; mesophyll cell; root hair cell; soil solution; xylem vessel contents

8. Figure a shows changes  in the relative humidity of the atmosphere during the  daylight hours of one  day.


Figure b shows changes in the tension in the xylem of a tree during the same  period.


a   Describe  and  explain  the  relationship between relative humidity and xylem  tension.

b   Describe and explain the differences observed in xylem tension between the  top of the tree and the bottom of the tree.

9    An instrument  called a dendrogram can be used to measure small changes in  the diameter of a tree trunk.

Typically, the  instrument  reveals daily changes,  with the diameter at its lowest during daylight hours and at its greatest at night.

Suggest an explanation for these observations.

10.   Copy the table and place a tick  or  a cross  in  the  appropriate box  to indicate whether  nitrogen  or magnesium may be in the biochemicals  shown.



11. The figure is a graph showing  the  relationship   between  rate  of transpiration  and  rate  of water  uptake  for  a particular prlant.


a   Define the term  transpiration.      [2]
b   State the two  environmental  factors which are most likely to  be responsible  for the changes  in  transpiration rateshown in  the  figure.   [2]
c   Describe the  relationship  between  rate  of transpiration and rate of water  uptake  shown  in  the  figure.                                                     [2]
d  Explainthe relationship.                    [4]


[Total:   10]

12   The  figure  is a light  micrograph  of a transverse   section   through    the  leaf of marram   grass  (Ammophila), a xerophytic plant.



a   Identify   three  xerophytic   features  visible  in the  light  micrograph.  [3]
b    Explain   how  each  of the  features  you  have identified   helps  the  plant   to conserve  water.                                                                                                                              [6]
[Total: 9]


13   Explain   how  active  loading   of sucrose  into  sieve elements   accounts   for  the  following   observations:
a    The  phloem   sap has  a relatively   high  pH  of about   pH  8.  [1]
b    The  inside  of sieve element/companion      cell units  is negatively   charged   relative  to  the  outside.   (There  is a difference   in electrical   potential    across  the  cell surface  membrane,    with  a potential    of about  -150  mV on  the  inside.) [2]
c    ATP  is present   in  relatively   large  amounts    inside  sieve tubes.[1]
                                                                                                                                              [Total: 4]

14  Figure  below shows  a sieve element with  red-stained  'triangles' of callose  at each  end.  These  triangles  indicate  the  positions  of the  sieve plates.




a   Assuming    the  magnification  of the  micrograph  is x 100, calculate  the  length  of the  sieve element.   Show  your working.    [3]

b   Scientists   were  puzzled   for  many  years  by the  fact  that  sieve plates  were  present   in sieve elements,   because sieve plates  increase   the  resistance   to flow. This  contrasts   with  xylem  vessel elements,   which  have  open  ends, redud resistance  to flow.

   i  Calculate   how  many  sieve plates  per  metre  a sucrose  molecule   would   have  to cross  if it were  travelling in  the  sieve tube  identified  in a above.  Show  your  working.   (Assume  all the  sieve elements   are the  same size as the  one  measured   in  the Figure above.)     [2]
   ii  What   is the  function  of the  sieve plates?                                  [1]
   iii   What   feature   of the  sieve plates  allows  materials   to cross  them?     [1]

c Flow  rates  in sieve tubes  range  from  0.3  to  1.5  m h-1  and  average  about 1 m h-1.. If the  flow rate  in the sieve element  shown   in Figure above  were  1 m h-1, how  long  would   it take  a sucrose  molecule   to  travel through    it? Show  your  working.             [Total: 3]

15. Translocation of organic  solutes  takes  place  between   sources   and  sinks.

a   Briefly explain under  what   circumstances:
   i   a seed could  be a sink                     [1]
   ii   a seed could  be a source                [1]
  iii  a leaf could  be a sink                      [1]
  iv  a leaf  could  be a source                [1]
   v   a storage organ  could   be a sink   [1]
  vi  a storage organ  could   be a source. [1]

b  Suggest two possible  roles  for  glucose  in  each  of the  following   sinks:
   i  a storage organ      [2]
   ii a growing bud.      [2]

 [Total: 10]

3. End-of-chapter answers 

1   A
2   B
3   C
5   a i vessel elements; tracheids; parenchyma; fibres;
        ii sieve (tube) elements; companion cells; parenchyma; fibres;
     b  vessel element: transport of water/support/transport of mineral ions;
          tracheid: transport of water/support/transport of mineral ions;
         sieve element: transport of, sucrose/organic solutes;
         companion cells: loading/unloading, phloem (sieve element)/forms functional unit with sieve element;
        parenchyma: storage/gas exchange;
        fibres: support/mechanical strength;


        b as size increases, volume increases faster than surface area;
            therefore as size increases, the surface area : volume ratio decreases;
            can no longer rely on diff usion to satisfy transport needs;

 soil solution > root hair cell > xylem vessel contents
     > mesophyll cell > dry atmospheric air

8 a the lower the relative humidity, the higher the tension/the lower the hydrostatic pressure, in the xylem;
     more evaporation from leaf (mesophyll cells) when low relative humidity;
    results in lower water potential in leaf (mesophyll cells);
    therefore more water moves from xylem (vessels to replace water lost from leaf);
    down a water potential gradient;
     sets up tension in the xylem vessels;

  b lowest/most negative, hydrostatic pressure is at the top of the tree;
     because water is being lost at the top of the tree;
    this sets up a tension which is greatest at the top of the tree;
    there is a, hydrostatic pressure/tension, gradient in the xylem vessels;
   some pressure is (inevitably) lost on the way down the tree;

 9   transpiration/loss of water vapour/loss of water by evaporation, from the leaves occurs during the day;
     because the stomata are open;
    this results in tension in the xylem (vessels);
    walls of xylem vessels are pulled slightly inwards/vessels shrink slightly;
    overall eff ect is for diameter of whole trunk to, shrink/get smaller;
   stomata close at night, so no transpiration at night;














 11 a the loss of water vapour;
         from the leaves/from the surface of a plant; [2]
     b light intensity;  temperature; [2]
     c rate of water uptake shows the same pattern as rate of transpiration; AW
      but there is a time delay, with changes in rate of transpiration occurring before changes in water uptake; AW [2]
    d transpiration causes water uptake;
       loss of water (by transpiration) sets up a water potential gradient in the plant;
      water potential in roots is lower than water potential in soil;
      therefore water enters plant through roots;
      time delay between rate of transpiration and rate of water uptake is due to time taken for effect of transpiration to be transmitted through the plant; AW [max. 4]
[Total: 10]


 12 a thick cuticle (on lower epidermis/outer surface when rolled);
         leaf rolled up (due to activity of hinge cells);
          hairy upper epidermis/leaf is hairy;
         stomata absent from lower epidermis/stomata only present in upper epidermis;
         sunken stomata/stomata in pits/stomata in grooves (in upper epidermis);       [max. 3]
   
  b thick cuticle:
          cuticle contains a (fatty and relatively) waterproof substance called cutin;
          the thicker it is, the more eff ective;
           
leaf rolled up:
          encloses a humid atmosphere/allows a humid atmosphere to build up;
         
hairy:
         hairs trap a layer of (still) moist air next to the leaf;

      stomata absent from lower epidermis:
        reduces/prevents, transpiration from, lower epidermis/exposed surface;
        sunken stomata:
        allows a humid (still) atmosphere to build up around the stomata;

     Allow 1 mark on one occasion only for ‘reduces the steepness of the water potential gradient from leaf to air inside the (rolled) leaf’ if relevant; [max. 6]
[Total: 9]

 13  
       a hydrogen ions are actively transported out of the, sieve element/companion cell; [1]
          
      b there are more hydrogen ions/there is a build-up of hydrogen ions, outside the sieve element–companion cell units compared with inside;
             hydrogen ions are positively charged; [2]
       
    c ATP is needed for the active transport of hydrogen ions out of the tubes; [1]
[Total: 4]

14 a actual length = observed length/magnifi cation,
                                   A = I:M
 observed length of sieve element = 51 mm (allow ±1 mm);
 actual length = 51 mm/150 = 0.51 mm; accept
conversion of mm to μm: answer = 510 μm [3]

  b i 1 metre = 1000 mm;
         1000/0.51 = 1961(to nearest whole number);
    or
       1 metre = 1 000 000 μm;
       1 000 000/510 = 1961 (to nearest whole number); [2]

 ii to maintain the pressure gradient inside the sieve tubes;
       without the sieve plates the diff erent pressures at source and sink would quickly equilibrate;                                                                                                                                            [max. 1]
  
 iii sieve pores;                                                                                                                [1]

c (sieve element is 0.51 mm long)
     (1 hour = 3600 seconds)
      3600 seconds to travel 1 metre;
      therefore:
     0.51/1000 × 3600 seconds to travel 0.51 mm;
      = 1.8 seconds (to one decimal place);
 Accept 510 μm and 1 000 000 (μm) instead of 0.51 mm and 1000 (mm). [3]
[Total: 10]

 15 a when seed is forming/just after fertilisation; [1]
     b germination; [1]
     c young immature leaf/leaf that is still growing; [1]
     d mature photosynthesising leaf; [1]
     e when food is being accumulated/when storage organ is growing (in size)/developing/end of plant’s growing season/just before winter; [1]
    f when plant starts to grow (using food from the storage organ); [1]
     g i to make starch;
        respiration; [2]
     ii to make cellulose;
      respiration; [2]
[Total: 10]





Transport In phloem

The movement of substances in phloem tissue is called translocation. The main substances that are moved are sucrose and amino acids, which are in solution in water. These substances have been made by the plant and are called assimilates.














Phloem tissue

Phloem tissue contains cells called sieve tube elements. Unlike xylem vessel elements, these are living cells and contain cytoplasm and a few organelles but no nucleus. Their walls are made of cellulose. A companion cell is associated with each sieve tube element.



Sources and sinks 

Vascular plants produce nutrients such as sucrose in their leaves. These nutrients must then be transported to the rest of the shoot or to the root tips, where growth occurs. The leaves are referred to as the source, and the shoot and root tips - sink.
  • A source is an organ that produces more sugar than it requires. That's where assimilates enter the phloem. 
  • A sink is an organ that consumes sugar for its own growth and storage. That's where assimilates leave the phloem. 




Translocation 

Assimilates (sucrose and amino  acids) move between sources (leaves and storage organs) and sinks ( buds, flowers, fruits, roots  and storage organs) in phloem sieve  tubes in a process called translocation.

The products from the source are usually translocated to the nearest sink through the phloem. The multidirectional flow of phloem contrasts the flow of xylem, which is always unidirectional (soil to leaf to atmosphere).

Translocation of sucrose and other assimilates is an energy-requiring process.

• Respiration in companion cells at a source provides ATP that is used to fuel the active transport of sucrose into the companion cell. This increases the concentration of sucrose in the companion cell, so that it moves by diffusion down a concentration gradient into the phloem sieve element.

• The increased concentration of sucrose in the companion cell and phloem sieve element produces a water potential gradient from the surrounding cells into the companion cell and phloem sieve element. Water moves down this gradient.


• At a sink, sucrose diffuses out of the phloem sieve element and down a concentration gradient into a cell that is using sucrose. This produces a water potential gradient, so water also diffuses out of the phloem sieve element.

• The addition of water at the source and the loss of water at the sink produces a higher hydrostatic pressure inside the phloem sieve element at the source than at the sink. Phloem sap therefore moves by mass flow down this pressure gradient, through the phloem sieve elements and through the sieve pores, from source to sink.



Video





 
 Syllabus 2015


(k) explain translocation as an energy-requiring process transporting assimilates, especially sucrose, between the leaves (sources) and other parts of the plant (sinks);

(l) explain the translocation of sucrose using the mass flow hypothesis;



Syllabus 2016

7.2    Transport mechanisms

Movement of xylem sap and phloem sap is by mass flow. Movement in the xylem is passive as it is driven by evaporation from the leaves; plants  use  energy to move substances in the phloem.
Xylem sap moves in one direction  from the roots  to the rest  of the plant. The phloem sap in a phloem sieve  tube moves in one direction  from the location  where it is made to the location  where it is used or stored. At any one time phloem sap can be moving in different directions in different sieve  tubes.

g)   state that  assimilates, such  as sucrose and amino  acids,  move between sources (e.g. leaves and storage organs)  and sinks (e.g. buds,  flowers, fruits, roots  and storage organs)  in phloem sieve  tubes

h)   explain how sucrose is loaded  into phloem sieve  tubes by companion cells using proton  pumping and the co-transporter mechanism in their cell surface membranes

i) explain mass flow in phloem sap down  a hydrostatic pressure gradient from source to sink




Saturday, 8 November 2014

Movement of Water and Minerals in the Xylem


Most plants secure the water and minerals they need from their roots.

The path taken is: soil -> roots -> stems -> leaves.

The minerals (e.g., K+, Ca2+) travel dissolved in the water.

Water and minerals enter the root by separate paths which eventually converge in the stele.







Transpiration
  • Transpiration is the loss of water from the plant through evaporation at the leaf surface. It is the main driver of water movement in the xylem. Transpiration is caused by the evaporation of water at the leaf, or atmosphere interface; it creates negative pressure (tension) equivalent to –2 MPa at the leaf surface. 
  • Water from the roots is pulled up by this tension. At night, when stomata close and transpiration stops, the water is held in the stem and leaf by the cohesion of water molecules to each other as well as the adhesion of water to the cell walls of the xylem vessels and tracheids. This is called the cohesion–tension theory of sap ascent.

How water moves from soil to air

Water moves from the soil to the air through a plant down a water potential gradient. The water potential in the soil is generally higher than in the air. The water potential in the leaves is kept lower than the water potential in the soil because of the loss of water vapour by transpiration. Transpiration maintains the water potential gradient.

• Water enters root hair cells by osmosis, moving down a water potential gradient from the water in the spaces between soil particles, through the cell surface membrane and into the cytoplasm and vacuole of the root hair cell.

• The water then moves from the root hair cell to a neighbouring cell by osmosis, down a water potential gradient. This is called the symplast pathway.

• Water also seeps into the cell wall of the root hair cell. This does not involve osmosis, as no partially permeable membrane is crossed. The water then seeps into and along the cell walls of neighbouring cells. This is called the apoplast pathway. In most plant roots, the apoplast pathway carries more water than the symplast pathway.

• When the water nears the centre of the root, it encounters a cylinder of cells called the endodermis. Each cell has a ring of impermeable suberin around it, forming the Casparlan strip. This prevents water continuing to seep through cell walls. It therefore travels through these cells by the symplast pathway.

• The water moves into the xylem vessels from the endodermis.

• Water  moves up the xylem vessels by mass flow - that is, in a similar way to water flowing in a river. The water molecules are held together by hydrogen bonds between them, keeping the water column unbroken. There is a relatively low hydrostatic pressure at the top of the column, produced by the loss of water by transpiration. This lowering of hydrostatic pressure causes a pressure gradient from the base to the top of the xylem vessel.

• In a leaf, water moves out of xylem vessels through pits, and then across the leaf by the apoplast and symplast pathways.

• Water evaporates from the wet cell walls into the leaf spaces, and then diffuses out through the stomata.

The diagrams below show the pathway taken by water through a plant.






* Evaporation: A leaf contains many cells in contact with air spaces in the mesophyll layers. Liquid water in the cell walls changes to water vapour, which diffuses into the air spaces. The water vapour then diffuses out of the leaf through the stomata, down a water potential gradient, into the air surrounding the leaf.


Each stoma is surrounded by a pair of guard cells. These can change shape to open or close the stoma. In order to photosynthesise, the stomata must be open so that CO2 can diffuse into the leaf. Plants cannot therefore avoid losing water vapour by transpiration.


Xerophytes

Plants have evolved over time to adapt to their local environment and reduce transpiration. A xerophyte (desert plant) is a plant that is adapted to live in an environment where water is in short supply.
Cacti are xerophytes.

The adaptations may include:

• leaves with a small surface area to volume ratio. This reduces the amount of surface area from which water vapour can diffuse.

• leaves with a thick, waxy cuticle. This reduces the quantity of water that can diffuse through the surface of the leaf into the air.

• methods of trapping moist air near the stomata, for example rolling leaf with stomata inside, having stomata in pits in the leaf surface, having hairs around the stomata. This produces a layer of high water potential around the stomata, reducing the water potential gradient and therefore reducing the rate of diffusion of water vapour from inside the leaf to outside.

Cross section of a xerophytic leaf. 

Transpiration is affected by several factors:
  • High temperature increases the rate of transpiration. This is because at higher temperatures water molecules have more kinetic energy. Evaporation from the cell walls inside the leaf therefore happens more rapidly, and diffusion also happens more rapidly.
  • High humidity decreases the rate of transpiration. This is because the water potential gradient between the air spaces inside the leaf and the air outside is less steep, so diffusion of water vapour out of the leaf happens more slowly.
  • High wind speed the rate of transpiration. This is because the moving air carries away water vapour from the surface of the leaf, helping to maintain a water potential gradient between the air spaces inside the leaf and the air outside.
  •  High light intensity may ↑ the rate of transpiration. This is because the plant may be photosynthesising rapidly, requiring a rapid supply of CO2. This means that more stomata are likely to be open, through which water vapour can diffuse out of the leaf.



Investigating the factors that affect transpiration rate

It is difficult to measure the rate at which water vapour is lost from leaves. It is much easier to measure the rate at which a plant, or part of a plant, takes up water. Most of the water taken up is lost through transpiration, so we can generally assume that an increase in the rate of take-up of water indicates an increase in the rate of transpiration.

The apparatus used to measure the rate of take-up of water of a plant shoot is called a potometer. This can simply be a long glass tube. More complex potometers may have reservoirs which make it easier to refill the tube with water, or a scale marked on them.



• Fix a short length of rubber tubing over one end of the long glass tube. Completely submerge the tube in water. Move it around to get rid of all air inside it and fill it with water. Make absolutely sure there are no air bubbles.

• Take a leafy shoot from a plant and submerge it in the water alongside the glass tube. Using a sharp blade, make a slanting cut across the stem.

• Push the cut end of the stem into the rubber tubing. Make sure the fit is tight and that there are no air bubbles. If necessary, use a small piece of wire to fasten the tube tightly around the stem.

• Take the whole apparatus out of the water and support it upright. Wait at least 10 minutes for it to dry out. If the glass tube is not marked with a scaie, place a ruler or graph paper behind it.

• Start a stop clock and read the position of the air/water meniscus (which will be near the base of the tube). Record its position every 2 minutes (or whatever time interval seems sensible). Stop when you have 10 readings, or when the meniscus is one third of the way up the tube.

• Change the environmental conditions and continue to take readings. For example, you could use a fan to increase 'wind speed', or move the apparatus into an area where the temperature is higher or lower.

• Plot distance moved by meniscus against time for each set of readings, on the same axes. Draw best fit lines. Calculate the mean distance moved per minute, or calculate the slope of each line. This can be considered to be the rate of transpiration.




 
 Syllabus 2015

(b) define the term transpiration (see section 5) and explain that it is an inevitable consequence of gas exchange in plants;

(c) [PA] describe how to investigate experimentally the factors that affect transpiration rate;

(g) explain the movement of water between plant cells, and between them and their environment, in terms of water potential (no calculations involving water potential will be set);

(h) describe the pathways and explain the mechanisms by which water is transported from soil to xylem and from roots to leaves (includes reference to the symplast/symplastic pathway and apoplast/apoplastic pathway);

(g) explain the movement of water between plant cells, and between them and their environment, in terms of water potential (no calculations involving water potential will be set);


(h) describe the pathways and explain the mechanisms by which water is transported from soil to xylem and from roots to leaves (includes reference to the symplast/symplastic pathway and apoplast/apoplastic pathway); 

(i) outline the roles of nitrate ions and of magnesium ions in plants;

(j) [PA] describe how the leaves of xerophytic plants are adapted to reduce water loss by transpiration;





Syllabus 2016

7.2    Transport mechanisms

Movement of xylem sap and phloem sap is by mass flow. Movement in the xylem is passive as it is driven by evaporation from the leaves; plants  use  energy to move substances in the phloem.
Xylem sap moves in one direction  from the roots  to the rest  of the plant. The phloem sap in a phloem sieve  tube moves in one direction  from the location  where it is made to the location  where it is used or stored. At any one time phloem sap can be moving in different directions in different sieve  tubes.

a)   explain the movement of water between plant cells, and between them and their environment, in terms of water potential (see  4.2. No calculations involving water potential will be set)

b)   explain how hydrogen bonding of water molecules is involved with movement in the xylem by cohesion-tension in transpiration pull and adhesion to cellulose cell walls

c)   describe the pathways and explain the mechanisms by which water and mineral ions are transported from soil to xylem and from roots to leaves (include reference to the symplastic pathway and apoplastic pathway and Casparian strip)

d)   define the term  transpiration and explain that  it is an inevitable consequence of gas exchange in plants

e)   investigate experimentally and explain the factors that  affect transpiration rate  using simple  potometers, leaf impressions, epidermal peels, and grids for determining surface area

f)    make  annotated drawings, using prepared slides  of cross-sections, to show how leaves of xerophytic  plants are adapted to reduce water loss by transpiration

g)   state that  assimilates, such  as sucrose and amino  acids,  move between sources (e.g. leaves and storage organs)  and sinks (e.g. buds,  flowers, fruits, roots  and storage organs)  in phloem sieve  tubes

h)   explain how sucrose is loaded  into phloem sieve  tubes by companion cells using proton  pumping and the co-transporter mechanism in their cell surface membranes

i) explain mass flow in phloem sap down  a hydrostatic pressure gradient from source to sink